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separate into ordinary differential equations along characteristic lines. 
Thus, along characteristic curves given by 

dh/dt = ± pa/po (22) 

the compatibility relations obtain: 

dp ± padu = 0 (23) 

These, combined with Eq. (17) 

(as/ at)h = 0 

can be solved by stepwise integration to yield a solution to the flow for 

given initial and boundary conditions. 

Where the wave propagates into a constant state (simple wave) 
entropy is the same throughout the flow and Eq. (23) can be integrated to 
give the Riemann integral: 

u - Uo = I dP/pa. (24) 

This relation is frequently used in the analysis of experimental data for 
rarefaction or continuous compression waves. By measuring the propagation 
speed of pressure or mass velocity increments, Eq. (23) can be integrated 
numerically to yield pressure-velocity and pressure-density relations. Note 
that this method is a special case of the general method outlined in Section 
III.A. For this case, as for steady flow, the two phase velocities, cp and 
cu' are equal since P = P(u). 

The characteristics method breaks down at shock fronts not nec
essarily because the shock becomes a discontinuity but because the assumption 
of an equilibrium equation of state is untenable. 
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D. Relaxing Elastic-Plastic Solids38 

For elastic-plastic relaxing solids the assumption of particle
isentropic flow is retained, or, more accurately, the effect of entropy 
changes on the pressure-density relation is ignored. Nonequilibrium states 
are allowed, however, by assuming that the plastic strain-rates may be 
time-dependent, and that the stresses depend only on the elastic strains. , 
The plastic strains are assumed incompressible. 

The relation to be added to the conservation relations is: 

(aP/at) - a2(ap/at) = -F(P,p) (25) 

where F is the plastic strain-rate multiplied by twice the shear modulus. 
The sound speed, a, is here the elastic longitudinal velocity, a = 
I(A + 2~)/p. Combining this equation with Eqs. (7) and (8) in the same 
fashion as for isentropic flow in fluids yields the characteristic equa
tions 

c+: dP + padu = -Fdt, on dh/dt = pa/po 

c . dP padu = -Fdt, on dh/dt = -pa/po . 

dP - 2 
co: a dp = -Fdt, on dh/dt = 0 

These equations have been applied to the solution of plane wave propagation 
in quartzite, which exhibits pronounced time-dependent effects. 38 They have 
also been applied to infer the plastic strain-rate at the elastic yield 
point in iron from measurements of the decay in elastic amplitude. 40 

At the elastic shock front, when an elastic precursor wave exists, 
the jump conditions can be applied to relate P and u through the relation 


